tumblr_omjar5ekFQ1r3tr9uo1_250 (1)

viernes, 23 de febrero de 2018

GUÍA DE ESTUDIO Y TRABAJO Introducción a conceptos biológicos



1. SER VIVO:  es un conjunto de átomos y moléculas, que forman una estructura material muy organizada y compleja, en la que intervienen sistemas de comunicación molecular que se relaciona con el ambiente con un intercambio de materia y energía de una forma ordenada y que tiene la capacidad de desempeñar las funciones básicas de la vida que son la nutrición, la relación y la reproducción, de tal manera que los seres vivos actúan y funcionan por sí mismos sin perder su nivel estructural hasta su muerte.
La materia que compone los seres vivos está formada en un 95% por cuatro bioelementos (átomos) que son el carbono, hidrógeno, oxígeno y nitrógeno, a partir de los cuales se forman las biomoléculas:
ü  Biomoléculas orgánicas o principios inmediatos: glúcidos, lípidos, proteínas y ácidos nucleicos.
ü  Biomoléculas inorgánicas: agua, sales minerales y gases.
Estas moléculas se repiten constantemente en todos los seres vivos, por lo que el origen de la vida procede de un antecesor común, pues sería muy improbable que hayan aparecido independientemente dos seres vivos con las mismas moléculas orgánicas. Se han encontrado biomarcadores en rocas con una antigüedad de hasta 3.500 millones de años, por lo que la vida podría haber surgido sobre la Tierra hace 3.800-4.000 millones de años.
Todos los seres vivos están constituidos por células. En el interior de éstas se realizan las secuencias de reacciones químicas, catalizadas por enzimas, necesarias para la vida.
Principales características de los seres vivos.
Resulta fácil, habitualmente, decidir si algo está vivo o no. Ello es debido a que los seres vivos comparten muchos atributos. Así mismo, la vida puede definirse según estas propiedades básicas de los seres vivos, que nos permiten diferenciarlos de la materia inerte:
ü  Organización. Las unidades básicas de un organismo son las células. Un organismo puede estar compuesto de una sola célula (unicelular) o por muchas (pluricelular).
ü  Homeostasis. Los organismos mantienen un equilibrio interno, por ejemplo, controlan activamente su presión osmótica y la concentración de electrolitos.
ü  Irritabilidad. Es una reacción ante estímulos externos. Una respuesta puede ser de muchas formas, por ejemplo, la contracción de un organismo unicelular cuando es tocado o las reacciones complejas que implican los sentidos en los animales superiores.
ü  Metabolismo. Los organismos consumen energía para convertir los nutrientes en componentes celulares (anabolismo) y liberan energía al descomponer la materia orgánica (catabolismo).
ü  Desarrollo. Los organismos aumentan de tamaño al adquirir y procesar los nutrientes. Muchas veces este proceso no se limita a la acumulación de materia sino que implica cambios mayores.
ü  Reproducción. Es la habilidad de producir copias similares de símismas, tanto asexualmente a partir de un único progenitor, como sexualmente a partir de al menos dos progenitores.
ü  Adaptación. Las especies evolucionan y se adaptan al ambiente.
 2. AUTOPOIESIS: Una forma alternativa de definir a los seres vivos es mediante el concepto de autopoiesis, introducido por los doctores Humberto Maturana y Francisco Varela. La idea es definir a los sistemas vivientes por su organización más que por un conglomerado de funciones. Un sistema se define como autopoiético cuando las moléculas producidas generan la misma red que las produjo y especifican su extensión. Los seres vivos son sistemas que viven mientras conserven su organización. Todos sus cambios estructurales son para adaptarse al medio en el cual ellos existen. Para un observador externo al sistema, esta organización aparece como auto-referida. Las células son los únicos sistemas vivos primarios, es decir aquellos capaces de mantener su autopoiesis en forma autónoma. Los organismos pluricelulares formados por células poseen características similares a las de las células, particularmente el estado estable, pero su vida les es concedida por la organización autopoiética de las células que los constituyen.

Este semestre leeremos:  "El árbol del conocimiento" de Maturana y Varela
https://pildorasocial.files.wordpress.com/2013/10/autores_humberto-maturana-francisco-varela-el-arbol-del-conocimiento.pdf
Los virus, un caso especial
Los virus cumplen con algunas de estas características (materia organizada y compleja, reproducción y evolución), pero no tienen metabolismo ni desarrollo. Hay cierto consenso en no considerarlos organismos aunque aún hay quien discrepa sobre la cuestión. Si consideramos que la característica básica de un ser vivo es tener descendencia y evolucionar, también los virus podrían considerarse seres vivos, pero si añadimos la posesión de un metabolismo y la capacidad de desarrollo, entonces no. Si definimos a la vida como un sistema con autopoiesis, la polémica si un virus es un ser viviente se resuelve con este concepto, ya que el virus no cuenta con una organización material autopoiética.
En 1948, los editores del Manual Bergey de Bacteriología Determinativa sugirieron llamar a al nuevo reino Protophyta, para incluir tanto a bacterias como a virus.

3. BIOLOGÍA:es la ciencia que tiene como objeto de estudio a los seres vivos y, más específicamente, su origen, su evolución y sus propiedades: nutrición, morfogénesis, reproducción, patogenia, etc. Se ocupa tanto de la descripción de las características y los comportamientos de los organismos individuales como de las especies en su conjunto, así como de la reproducción de los seres vivos y de las interacciones entre ellos y el entorno. De este modo, trata de estudiar la estructura y la dinámica funcional comunes a todos los seres vivos, con el fin de establecer las leyes generales que rigen la vida orgánica y los principios explicativos fundamentales de esta.
 La biología es una disciplina científica que abarca un amplio espectro de campos de estudio que, a menudo, se tratan como disciplinas independientes. Todas ellas juntas estudian la vida en un amplio rango de escalas. La vida se estudia a escala atómica y molecular en biología molecular, en bioquímica y en genética molecular. Desde el punto de vista celular, se estudia en biología celular, y a escala pluricelular se estudia en fisiología, anatomía e histología. Desde el punto de vista de la ontogenia o desarrollo de los organismos a nivel individual, se estudia en biología del desarrollo.
 Cuando se amplía el campo a más de un organismo, la genética trata el funcionamiento de la herencia genética de los padres a su descendencia. La ciencia que trata el comportamiento de los grupos es la etología, esto es, de más de un individuo. La genética de poblaciones observa y analiza una población entera y la genética sistemática trata los linajes entre especies. Las poblaciones interdependientes y sus hábitats se examinan en la ecología y la biología evolutiva. Un nuevo campo de estudio es la astrobiología (o xenobiología), que estudia la posibilidad de la vida más allá de la Tierra.
4. SER HUMANO:constituye desde el punto de vista biológico una especie animal bajo la denominación científica de Homo sapiens (del latín «homo», «hombre», y «sapiens», «sabio») y pertenece a la familia Hominidae.
 También es conocido bajo la denominación genérica de hombre, aunque ese término es ambiguo pues se usa también para referirse a los individuos de sexo masculino y en particular a los varones adultos. Los seres humanos pueden llegar a desarrollar capacidades mentales que les permiten inventar, aprender y utilizar estructuras lingüísticas complejas, matemáticas, escritura, ciencia, tecnología. Los humanos son entes sociales, capaces de concebir, transmitir y aprender conceptos totalmente abstractos. No se tiene evidencia de que exista otra forma de vida con dichas capacidades —o superiores— en el universo.
 En el pasado, el género Homo fue más diversificado, y durante el último millón y medio de años incluía otras especies ya extintas. Desde la extinción del Homo neanderthalensis, hace 25 000 años y del Homo floresiensis, hace unos 12 000 años, el Homo sapiens es la única especie conocida del género Homo que aún perdura.

 Hasta hace poco, la biología utilizaba un nombre trinomial Homo sapiens sapiens para esta especie, pero más recientemente se ha descartado el nexo filogenético entre el neandertal y la actual humanidad,4 por lo que se usa exclusivamente el nombre binominal. Homo sapiens pertenece a una estirpe de Primates, los hominoideos. Evolutivamente se diferenció en África y de ese ancestro surgió la familia de la que forman parte los homínidos.
 Filosóficamente, el ser humano se ha definido y redefinido a sí mismo de numerosas maneras a través de la historia, otorgándose de esta manera un propósito positivo o negativo respecto de su propia existencia. Existen diversos sistemas religiosos e ideales filosóficos que, de acuerdo a una diversa gama de culturas e ideales individuales, tienen como propósito y función responder algunas de esas interrogantes existenciales. Los seres humanos tienen la capacidad de ser conscientes de sí mismos, así como de su pasado; saben que tienen el poder de planear, transformar y realizar proyectos de diversos tipos. En función a esta capacidad, han creado diversos códigos morales y dogmas orientados directamente al manejo de estas capacidades. Además, pueden ser conscientes de responsabilidades y peligros provenientes de la naturaleza, así como de otros seres humanos.
5. NIVELES DE ORGANIZACIÓN DE LA MATERIA.

Te sugiero ver este vídeo antes de leer esta información:
https://youtu.be/KCa4rR3u9Jo

 La materia está organizada en niveles, desde el nivel subatómico hasta el mundo biológico y social. Cada nivel tiene métodos de estudio propios.
Del átomo al cuerpo humano
El Cuerpo humano constituye un todo único que se compone de diferentes sistemas que mantienen el metabolismo celular y hacen posible la vida. Todos los sistemas que conoces, como el locomotor, digestivo, respiratorio, urogenital, endocrino y nervioso, están constituidos por órganos. Los órganos son agrupaciones de tejidos con una estructura particular, adaptada a la función que desempeñan. Los órganos responden a patrones estructurales que estudiaremos en su momento.
Todo tejido está constituido por células, matriz extracelular y líquido tisular. Las células, por su parte, constituyen un sistema de agregados moleculares. Y por último las moléculas están constituidas por átomos. La materia, por lo tanto, está organizada en niveles desde inferiores a superiores según el desarrollo alcanzado en la escala evolutiva. Estos niveles son: subatómico o de las partículas elementales, atómico, molecular, celular, nivel de organismos, poblaciones, especie, Comunidad y mundo biológico y social.
a. Subatómico: este nivel es el más simple de todo y está formado por electrones, protones y neutrones, que son las distintas partículas que configuran el átomo.
Así vemos que para llegar al cuerpo humano (nivel de organismo), se debe comenzar por el nivel molecular, por el nivel Celular; el nivel tisular y de órgano, vinculando las características morfológicas con el funcionamiento en cada uno de los niveles mencionados.
b. Átomos: es el  nivel funcional fundamental de la de la materia. Lo mínimo de la materia inerte y viva.
c. Moléculas: conjunto de átomos unidos.
d. Organelo: una subunidad de la célula. Un organelo se encuentra relacionada con una determinada función celular por ejemplo: la mitocondria (el sitio principal de generación de ATP en eucariotas).
e. Célula: la más pequeña unidad estructural y funcional de los seres vivos capaz de funcionar independientemente. Cada célula tiene un soporte químico para la herencia (ADN), un sistema químico para adquirir energía, materia, etc.
f. Tejido: (en organismos multicelulares). Un grupo de células que realizan una determinada función. Por ejemplo el tejido muscular cardíaco. 
g. Órganos: (en organismos multicelulares). Grupo de células o tejidos que realizan una determinada función. Por ejemplo el corazón, es un órgano que bombea la sangre en el sistema circulatorio.
h. Sistema: (en organismos multicelulares). Grupo de células, tejidos y órganos que están organizados para realizar una determinada función, por ejemplo: el sistema circulatorio.
i. Individuo: Una o más células caracterizadas por un único tipo de información codificada en su ADN. Puede ser unicelular o multicelular. Los individuos multicelulares muestran tipos celulares especializados y división de funciones en tejidos, órganos y sistemas.
j. Poblaciones: Grupos de individuos similares que tienden a aparearse entre sí en un área geográfica limitada. Esto puede ser tan sencillo como un campo con flores separado de otro campo por una colina sin flores.
k. Especie: Grupo de individuos similares que tienden a aparearse entre sí dando origen a una cría fértil. Muchas veces encontramos especies descriptas, no por su reproducción (especies biológicas) sino por su forma (especies anatómicas).
l. Comunidad: Es la relación entre grupos de diferentes especies. Por ejemplo, las comunidades del desierto pueden consistir en conejos, coyotes, víboras, ratones, aves y plantas como los cactus. La estructura de una comunidad puede ser alterada por cosas tales como el fuego, la actividad humana y la sobrepoblación.
m. Ecosistema: La relación entre un grupo de organismos entre sí y su medio ambiente. Los científicos a menudo hablan de la interrelación entre los organismos vivos. Dado, que de acuerdo a la teoría de Darwin los organismos se adaptan a su medio ambiente, también deben adaptarse a los otros organismos de ese ambiente.
 n. Biosfera: La suma de todos los seres vivos tomados en conjunto con su medio ambiente. En esencia, el lugar donde ocurre la vida, desde las alturas de nuestra atmósfera hasta el fondo de los océanos o hasta los primeros metros de la superficie del suelo (o digamos mejor kilómetros sí consideramos a las bacterias que se pueden encontrar hasta una profundidad de cerca de 4 Km. de la superficie). Dividimos a la Tierra en atmósfera (aire), litosfera (tierra firme), hidrosfera (agua), y biosfera (vida).
o. Ecósfera: La zona potencialmente apta para la generación y existencia de vida en el Sistema Solar se llama Ecósfera, una envoltura teórica alrededor del Sol en la que un planeta no tendría una temperatura ni demasiado elevada ni demasiado baja para la existencia de la vida. De todos los planetas de nuestro Sistema Solar, la Tierra es el único planeta que cae totalmente dentro de la Ecósfera. Lo comprenderemos entonces, como el ecosistema mundial. Abarca a todos los organismos vivientes -la biosfera- y las interacciones entre ellos y con la tierra, el agua y la atmósfera. Biotopo + Biocenosis del planeta Tierra.
6. COMPOSICIÓN MOLECULAR DE LOS ORGANISMOS
Toda la materia, incluso aquella de los organismos más complejos, está constituida por combinaciones de elementos.
 En la Tierra, existen 92 elementos naturales. Muchos son muy conocidos, como el carbono, que se encuentra en forma pura en el diamante y en el grafito; el oxígeno, abundante en el aire que respiramos; el calcio, que utilizan muchos organismos para construir conchas, cáscaras de huevo, huesos y dientes, y el hierro, que es el metal responsable del color rojo de nuestra sangre.

En la tabla periódica de los elementos el número de ellos llega hasta 111 y en algunas hasta 118, debido a que se han agregado aquellos elementos que se producen de manera artificial.
La partícula más pequeña de un elemento es el átomo. Los átomos, a su vez, están constituidos por partículas más pequeñas: protones, neutrones y electrones.

En la actualidad, los físicos explican la estructura del átomo por medio del modelo orbital. Los átomos son las piezas fundamentales de toda la materia viva y no viva. Aun así, son muy pequeños y constituyen un espacio eminentemente vacío. Los electrones se mueven alrededor del núcleo a una gran velocidad —una fracción de la velocidad de la luz— siendo la distancia entre el electrón y el núcleo, en promedio, unas mil veces el diámetro del núcleo.

Las reacciones químicas involucran el intercambio de electrones entre los átomos y pueden representarse con ecuaciones químicas. Tres tipos generales de reacciones químicas son:
a. la combinación de dos o más sustancias para formar una sustancia diferente,
b. la disociación de una sustancia en dos o más, y
c. el intercambio de átomos entre dos o más sustancias.
Las sustancias formadas por átomos de dos o más elementos diferentes, en proporciones definidas y constantes, se conocen como compuestos químicos.
Los seres vivos están constituidos por los mismos componentes químicos y físicos que las cosas sin vida, y obedecen a las mismas leyes físicas y químicas.
Seis elementos (C, H, N, O, P y S) constituyen el 99 por ciento de toda la materia viva, sin ser los elementos más abundantes en el planeta. Los átomos de estos elementos son pequeños y forman enlaces covalentes estables y fuertes. Con excepción del hidrógeno, todos pueden formar enlaces covalentes con dos o más átomos, dando lugar a las moléculas complejas que caracterizan a los sistemas vivos.
El uno por ciento restante de lo que constituye la materia viva se reparte en los llamados elementos traza, que se encuentran en pequeñísimas cantidades.
Representación esquemática de la composición elemental del cuerpo humano (porcentaje del peso corporal).

7. ENLACES Y MOLÉCULAS
Cuando los átomos entran en interacción mutua, de modo que se completan sus niveles energéticos exteriores, se forman partículas nuevas más grandes. Estas partículas constituidas por dos o más átomos se conocen como moléculas y las fuerzas que las mantienen unidas se conocen como enlaces.
Hay dos tipos principales de enlaces: iónico y covalente.
Los enlaces iónicos se forman por la atracción mutua de partículas de carga eléctrica opuesta; esas partículas, formadas cuando un electrón salta de un átomo a otro, se conocen como iones. Para muchos átomos, la manera más simple de completar el nivel energético exterior consiste en ganar o bien perder uno o dos electrones. Este es el caso de la interacción del sodio con el cloro que forma cloruro de sodio a través de un enlace iónico. Estos enlaces pueden ser bastante fuertes pero muchas sustancias iónicas se separan fácilmente en agua, produciendo iones libres.
La capacidad de los átomos de carbono para formar enlaces covalentes es de extraordinaria importancia en los sistemas vivos. Un átomo de carbono tiene cuatro electrones en su nivel energético exterior. Puede compartir cada uno de estos electrones con otro átomo, formando enlaces covalentes hasta con cuatro átomos.
Los enlaces covalentes formados por un átomo de carbono pueden hacerse con cuatro átomos diferentes (los más frecuentes son hidrógeno, oxígeno y nitrógeno) o con otros átomos de carbono.
ó
Busca y nombra ejemplos de moléculas de importancia biológica que se unan por enlaces iónicos y covalentes.  ¡Que se entiende por puente de hidrógeno? ¿Que tipos de moléculas lo realizan?

8. ELEMENTOS BIOLÓGICAMENTE IMPORTANTES
Los elementos son, por definición, sustancias que no pueden ser desintegradas en otras sustancias por medios químicos ordinarios. Como ya dijimos, de todos los elementos naturales de la Tierra, sólo seis constituyen aproximadamente el 99 por ciento de todos los tejidos vivos. Estos seis elementos son el carbono, el hidrógeno, el nitrógeno, el oxígeno, el fósforo y el azufre, a los cuales se los conoce con la sigla CHNOPS.
¿Por qué, cuando la vida se organizó y evolucionó, fueron estos elementos tan importantes?
Una de las razones más convincentes es que estos elementos, por la estructura de su última capa de electrones, tienden a compartirlos entre ellos, es decir establecen enlaces unos con otros. Además, son elementos relativamente pequeños, de modo que los electrones compartidos quedan bastante cerca de los núcleos y esto los hace formar compuestos o moléculas muy estables. Aunque no se puede ignorar que dado su reducido tamaño, es más probable encontrarles en la superficie del planeta, lugar donde se origina la vida.
 Más aun, con excepción del hidrógeno, los átomos de todos estos elementos pueden formar enlaces con dos o más átomos, haciendo posible la constitución de las moléculas grandes y complejas esenciales para las estructuras y funciones de los sistemas vivos.

9. CLASIFICACIÓN DE LAS MOLÉCULAS QUE SE ENCUENTRAN EN LOS SISTEMAS VIVOS.
En el cuerpo encontramos diferentes clases de moléculas. Entre ella, los minerales constituyen la clase de sustancias inorgánicas que en su mayoría existen en forma de iones, tales como Na+, K+, Mg2+, Ca2+, y Cl-. Las funciones de estos minerales en el cuerpo comprenden desde la formación de la sustancia cristalina de los huesos, hasta la generación de corrientes eléctricas en los nervios y células musculares; la mayoría de estas funciones depende del hecho de ser estos iones partículas relativamente pequeñas y de una gran carga eléctrica.
Composición molecular del cuerpo
Constituyente
% del peso hidratado
Agua
60
Proteínas
17
Lípidos
15
Minerales (Na, K, Cl, Ca, Mg, etc.)
5
Intermediarios y ácidos nucleicos
2
Carbohidratos
1
 El agua y los elementos minerales constituyen los componentes inorgánicos del cuerpo; las otras categorías, proteínas, lípidos, carbohidratos, productos intermedios, y ácidos nucleicos, constituyen las moléculas orgánicas.
De manera muy breve analizaremos aquí cada una de estas categorías moleculares.
El término proteína se deriva del griego proteios, que quiere decir de primer orden o de primera categoría, y el cual describe en forma muy precisa la importancia de estos compuestos.
Las proteínas constituyen el diecisiete por ciento del peso corporal, y aproximadamente el cincuenta por ciento de las materias orgánicas corporales. No existe otra clase de moléculas que posea tantas funciones importantes en los organismos vivos.
Las proteínas participan tanto en las funciones estáticas como en las dinámicas de un organismo. Son las unidades estructurales básicas de la arquitectura celular que dan a las células y organelos su forma y aspecto. Las moléculas proteicas son como cordeles que unen el organismo y le imparten unidad estructural.
El tejido conjuntivo del organismo, que forma una matriz estructural en todos los tejidos, y comprende estructuras especializadas tales como la piel, el pelo, los ligamentos que conforman las articulaciones entre los huesos, y los tendones que unen los músculos a los huesos, está compuesto primordialmente de moléculas proteicas.
El papel estructural estático de las proteínas constituye solamente una de sus funciones en el cuerpo. Las proteínas catalizan la mayoría de las reacciones químicas del organismo, las cuales comprenden tanto los procesos de síntesis como los de degradación de las moléculas orgánicas.
La capacidad del organismo para regular sus procesos químicos y derivar de éstos energía depende de la naturaleza de las moléculas proteicas que facilitan estas reacciones.
La capacidad contráctil del músculo depende de la presencia de proteínas contráctiles específicas dentro de estas células. Muchos de los mensajeros químicos del organismo, hormonas tales como la insulina, son de naturaleza proteica. Muchas enfermedades resultan de la presencia de proteínas extrañas que penetran en el organismo como componentes de las bacterias o de los virus, los cuales a su vez son combatidos por proteínas específicas que conocemos como anticuerpos. El color rojo de la sangre es producido por una proteína, la hemoglobina, que posee la función de llevar oxígeno de los pulmones a los tejidos. Esta enumeración parcial da apenas una idea de la enorme variedad de funciones que tienen a su cargo las proteínas.
Del griego lipos que significa grasa, un lípido se define como una molécula relativamente insoluble en el agua, pero soluble en solventes orgánicos tales como la acetona, el cloroformo, el éter o el benceno.
Los miembros de esta categoría química poseen propiedades físicas comunes, más bien que estructuras moleculares similares. Las grasas pertenecen a esta clase, y los términos grasa y lípido se intercambian a menudo ya que la mayoría de los lípidos del cuerpo son grasas.
En rigor, sin embargo, las grasas constituyen sólo una de las varias subclases de moléculas que conforman los lípidos.
Los lípidos están compuestos ampliamente de hidrógeno y carbono. Los lípidos más simples son los hidrocarburos.
Los aceites y la gasolina son mezclas de hidrocarburos; las cadenas largas de hidrocarburos conforman los aceites más viscosos, y las cadenas cortas se encuentran en la gasolina que es más volátil. (La vida vegetal prehistórica que ha permanecido enterrada por millones de años, es la fuente de aceite crudo, del cual se refinan los productos derivados del petróleo. Estos hidrocarburos se derivan de toda clase de moléculas biológicas orgánicas, pero sólo unos cuantos hidrocarburos más sencillos se encuentran en los organismos vivos.)
Los lípidos que se encuentran en el organismo pueden dividirse en tres subclases, en función de sus estructuras químicas: las grasas neutras, los fosfolípidos y los esteroides. Las tres subclases poseen la propiedad común de que sus moléculas son relativamente insolubles porque no se disuelven en el agua pero sí en solventes orgánicos. Tomados en conjunto, los lípidos constituyen el  quince por ciento del peso corporal total, y aproximadamente el cuarenta por ciento de la mate­ria orgánica del cuerpo.
12. CARBOHIDRATOS O GLÚCIDOS
Aunque sólo constituyen el uno por ciento del peso corporal total, los carbohidratos desempeñan un papel central en los procesos químicos del cuerpo. Es la degradación química de las moléculas de los carbohidratos en bióxido de carbono y agua la que suministra la energía química que utilizan las células.
Aunque los carbohidratos no constituyen la única fuente de energía, ellos permanecen como la fuente más inmediatamente disponible de energía química, y muchas células los utilizan prefiriéndolos a otros tipos de moléculas. Algunos tejidos, como los del cerebro, cuentan con los carbohidratos como única fuente de energía.
El término carbohidrato se deriva de la fórmula general para la mayoría de estas moléculas, Cn (H2O)n, donde n es cualquier número entero. Como lo indica la fórmula, para cada átomo de carbono de la molécula existe el equivalente de una molécula de agua. Por consiguiente, los carbohidratos son cadenas de carbono hidratadas (que contienen agua).
Los carbohidratos más simples son los azúcares, y el azúcar más importante del cuerpo es la glucosa, llamada comúnmente azúcar sanguíneo. La mayoría de los azúcares del cuerpo posee cinco o seis átomos de carbono.
Mediante el enlace de cierto número de azúcares, pueden formarse moléculas mayores de carbohidratos, en la misma forma en que se unen los aminoácidos para formar proteínas. El azúcar de cocina, sucrosa o sacarosa, está compuesto de dos azúcares, glucosa y fructosa, unidos me­diante un enlace químico que se forma al quitarles a estos dos azúcares una molécula de agua. Una molécula que contiene dos azúcares lleva el nombre de disacárido (del griego saccaron, azúcar). Cuando están enlazados muchos azúcares, la molécula formada se denomina polisacárido.
Los polisacáridos más importantes en los organismos vivos son el almidón, el glicógeno, y la celulosa, los cuales se componen de millares de unidades repetidas del monosacárido glucosa.

13. INTERMEDIARIOS
Dentro de una célula, las moléculas de carbohidrato, lípido y proteína están sujetas continuamente a reacciones químicas que degradan estas estructuras en unidades moleculares más pequeñas, de las cuales se forman simultáneamente nuevas moléculas. Estas reacciones químicas que se efectúan en el interior de la célula se denominan, en forma colectiva,metabolismo (del griego, cambio).
 En el metabolismo celular (no confundir con el metabolismo basal) se sintetizan moléculas especiales que realizan funciones específicas en el interior de las células mientras otras moléculas se degradan a fin de liberar la energía potencial almacenada en sus enlaces químicos.
Los carbohidratos, lípidos y proteínas se encuentran igualmente en uno u otro extremo de la cadena de las reacciones químicas. Los intermediariosrepresentan los muchos tipos de moléculas que se forman durante la síntesis y degradación de las moléculas del cuerpo.
Como intermediarias entre las materias primas y los productos terminados del cuerpo, tales moléculas no tienen a menudo, en la célula, función distinta de la de servir de enlace en la cadena de reacciones químicas que conduce al producto final. Los intermediarios no poseen propiedades químicas o físicas en común, ya que comprenden todas las estructuras moleculares intermedias derivadas de los carbohidratos, lípidos y proteínas.
Aunque, dentro de su clase, los ácidos nucleicos contribuyen muy poco al peso del organismo, constituyen, sin embargo, las moléculas mayores y más especializadas del cuerpo. Son los ácidos nucleicos los que determinan si un individuo ha de ser hombre o ratón, o si una célula ha de ser muscular o hepática. Estas son las moléculas que contienen la información genética que suministra los planos para la construcción de un organismo.
Los ácidos nucleicos son de dos tipos: ácido desoxirribo­nucleico (ADN) y ácido ribonucleico (ARN). La molécula del ADN posee la información genética primaria codificada dentro de su estructura molecular; las moléculas del ARN funcionan principalmente en la trascripción de la información contenida en la molécula del ADN en una forma que pueda ser utilizada por la célula para construir estructuras específicas que desempeñen funciones igualmente especificas.

LINKS DE INTERÉS
http://temas-biologia.blogspot.com/2008/10/las-molculas-de-la-vida.html
https://www.youtube.com/watch?v=p0ZJ0j3KBQo


No hay comentarios:

Publicar un comentario